资源类型

期刊论文 413

会议视频 7

年份

2023 41

2022 52

2021 37

2020 28

2019 35

2018 24

2017 32

2016 12

2015 18

2014 18

2013 12

2012 20

2011 19

2010 5

2009 15

2008 11

2007 11

2006 1

2005 1

2004 2

展开 ︾

关键词

碳中和 5

节能减排 4

生物降解 3

减灾 2

可持续发展 2

微生物代谢 2

微生物安全 2

温室气体 2

生物表面活性剂 2

2-羟基丁酸 1

C-Bézier曲面;降阶;边界约束 1

CO2利用 1

Laplacian特征映射 1

Nd-Fe-B磨削油泥 1

Pt–Ba–Ce/γ-Al2O3 催化剂,物理化学性质,NOx存储和还原,NOx 排放,H2 还原剂 1

SWOT 分析 1

一水硬铝石 1

一维(1D) 1

中国西部开发 1

展开 ︾

检索范围:

排序: 展示方式:

Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential, dissolved organic nitrogen and microbial community

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1514-3

摘要:

• ORP value from −278.71 to −379.80 mV showed indiscernible effects on methane yield.

关键词: Enhanced anaerobic sludge digestion     Different iron valence     Oxidation reduction potential     Dissolved organic nitrogen     Microbial community    

Process control factors for continuous microbial perchlorate reduction in the presence of zero-valent

ARTHUR Robert D.,TORLAPATI Jagadish,SHIN Kyung-Hee,CHA Daniel K.,YOON Yeomin,SON Ahjeong

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 386-393 doi: 10.1007/s11783-013-0593-1

摘要: Process control parameters influencing microbial perchlorate reduction via a flow-through zero-valent iron (ZVI) column reactor were investigated in order to optimize perchlorate removal from water. Mixed perchlorate reducers were obtained from a wastewater treatment plant and inoculated into the reactor without further acclimation. Examined parameters included hydraulic residence time (HRT), pH, nutrients requirement, and perchlorate reduction kinetics. The minimum HRT for the system was concluded to be 8 hr. The removal efficiency of 10 mg·L influent perchlorate concentration was reduced by 20%–80% without control to the neutral pH (HRT= 8 hr). Therefore pH was determined to be an important parameter for microbial perchlorate reduction. Furthermore, a viable alternative to pH buffer was discussed. The microbial perchlorate reduction followed the first order kinetics, with a rate constant ( ) of 0.761 hr . The results from this study will contribute to the implementation of a safe, cost effective, and efficient system for perchlorate reduction to below regulated levels.

关键词: perchlorate     zero-valent iron (ZVI)     microbial reduction     hydrogen    

Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms

Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia

《环境科学与工程前沿(英文)》 2018年 第12卷 第5期 doi: 10.1007/s11783-018-1077-0

摘要:

Microbial metabolism uncoupling, sludge decay is the main mechanism to promote in situ sludge reduction on this biofilm system.

The main reduction mechanism inside the biofilm is sludge decay in the longitudinal distribution of biofilm.

Mizugakiibacter and Azospira anaerobic fermentation bacterium dominate the FSC organisms indicating the dominant mechanism on the biofilm is sludge decay.

The floating spherical carriers with compound of the polyurethane and two fiber balls can effectively blocking suspended sludge, improving Biofilm formation efficiency significantly.

关键词: In situ sludge reduction     Biofilm     Composite floating spherical carriers     Microbial community     SBBR    

meets artificial photosynthesis: Solar to green fuel production, water remediation and carbon emission reduction

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-022-1536-5

摘要:

• Mitigating energy utilization and carbon emission is urgent for wastewater treatment.

关键词: Wastewater treatment     Artificial photosynthesis     Microbial photoelectrochemical (MPEC) system     Carbon neutral     Renewable energy    

Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor

Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1055-6

摘要:

HAP was verified to reduce the toxicity of TMP wastewater effectively.

Actual TMP wastewater was fed in HAP with different dilution ratios for 240 days.

Formaldehyde, 2-ethylacrolein, TMP and 2-ethylhexanol were all greatly removed.

Firmicutes became the dominant phylum (the abundance increased to 57.08%).

关键词: Trimethylolpropane wastewater     Hydrolysis acidification process     Toxicity     Oxygen uptake rate     16S rDNA    

Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived

Thomas F. Ducey, Jessica C. Collins, Kyoung S. Ro, Bryan L. Woodbury, D. Dee Griffin

《环境科学与工程前沿(英文)》 2017年 第11卷 第3期 doi: 10.1007/s11783-017-0930-x

摘要: Hydrothermal carbonization (HTC), utilizing high temperature and pressure, has the potential to treat agricultural waste via inactivating pathogens, antibiotic resistance genes (ARG), and contaminants of emerging concern (CEC) in a environmental and economical manner. Livestock mortality is one facet of agricultural waste that can pose a threat to the surrounding environment. While several methods are utilized to treat livestock mortality, there remains a paucity of data on the elimination of microbially-derived DNA in these treatment practices. This DNA, most notably ARGs, if it survives treatment can be reintroduced in agricultural environments where it could potentially be passed to pathogens, posing a risk to animal and human populations. HTC treatments have been successfully utilized for the treatment of CECs, however very little is understood on how ARGs survive HTC treatment. This study aims to fill this knowledge gap by examining the survivability of microbially-derived DNA in the HTC treatment of livestock mortality. We examined three treatment temperatures (100°C, 150°C, and 200°C) at autogenic pressures at three treatment times (30, 60, and 240 min). We examined the amplification of a plasmid-borne reporter gene carried by DH10B introduced to both beef bone and tissue. Results indicate that while all three temperatures, at all treatment times, were suitable for complete pathogen kill, only temperatures of 150°C and 200°C were sufficient for eliminating microbial DNA. These results serve as the basis for future potential HTC treatment recommendations for livestock mortality when considering the elimination of pathogens and ARGs.

关键词: High-temperature carbonization     Microbial DNA     Livestock mortality    

Responses of microbial interactions to elevated salinity in activated sludge microbial community

《环境科学与工程前沿(英文)》 2023年 第17卷 第5期 doi: 10.1007/s11783-023-1660-x

摘要:

● Salinity led to the elevation of NAR over 99.72%.

关键词: Elevated salinity     Activated sludge system     Pollution removal     Microbial interactions     Competitive relationship    

Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review

Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao

《环境科学与工程前沿(英文)》 2019年 第13卷 第6期 doi: 10.1007/s11783-019-1173-9

摘要: Microbial Fe(III) reduction is closely related to the fate of pollutants. Bioavailability of crystalline Fe(III) oxide is restricted due to thermodynamics. Amorphous Fe(III) (hydro)oxides are more bioavailable. Enrichment and incubation of Fe(III) reducing bacteria are significant. Microbial Fe(III) reduction is a significant driving force for the biogeochemical cycles of C, O, P, S, N, and dominates the natural bio-purification of contaminants in groundwater (e.g., petroleum hydrocarbons, chlorinated ethane, and chromium). In this review, the mechanisms and environmental significance of Fe(III) (hydro)oxides bioreduction are summarized. Compared with crystalline Fe(III) (hydro)oxides, amorphous Fe(III) (hydro)oxides are more bioavailable. Ligand and electron shuttle both play an important role in microbial Fe(III) reduction. The restrictive factors of Fe(III) (hydro)oxides bioreduction should be further investigated to reveal the characteristics and mechanisms of the process. It will improve the bioavailability of crystalline Fe(III) (hydro)oxides and accelerate the anaerobic oxidation efficiency of the reduction state pollutants. Furthermore, the approach to extract, culture, and incubate the functional Fe(III) reducing bacteria from actual complicated environment, and applying it to the bioremediation of organic, ammonia, and heavy metals contaminated groundwater will become a research topic in the future. There are a broad application prospects of Fe(III) (hydro)oxides bioreduction to groundwater bioremediation, which includes the in situ injection and permeable reactive barriers and the innovative Kariz wells system. The study provides an important reference for the treatment of reduced pollutants in contaminated groundwater.

关键词: Microbial Fe(III) reduction     Mechanism     Groundwater contamination     Remediation    

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 21-27 doi: 10.1007/s11783-011-0303-9

摘要: New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.

关键词: polymerase chain reaction (PCR)     microbial communities     pyrosequencing     gut     microbial fuel cell     sludge    

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 545-558 doi: 10.15302/J-FASE -2020349

摘要:

Agriculture uses a large proportion of global and regional water resources. Due to the rapid increase of population in the world, the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability. As the medium for crop growth, soils and their properties are important in affecting crop water productivity. This review examines the effects of soil physical, chemical, and microbial properties on crop water productivity and the quantitative relationships between them. A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future.

 

关键词: crop water productivity     crop yield     soil chemical properties     soil microbial properties     soil physical properties     water consumption    

thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1342-x

摘要:

• SMX addition had negative effect on acetoclastic methanogens in mesophilic AD.

关键词: Pig manure     Antibiotics     Anaerobic digestion     Resistance genes     Microbial community    

porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated microbial

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1761-1771 doi: 10.1007/s11705-022-2195-6

摘要: Microbial electrosynthesis is a promising alternative to directly convert CO2 into long-chain compounds by coupling inorganic electrocatalysis with biosynthetic systems. However, problems arose that the conventional electrocatalysts for hydrogen evolution may produce extensive by-products of reactive oxygen species and cause severe metal leaching, both of which induce strong toxicity toward microorganisms. Moreover, poor stability of electrocatalysts cannot be qualified for long-term operation. These problems may result in poor biocompatibility between electrocatalysts and microorganisms. To solve the bottleneck problem, Co anchored on porphyrinic triazine-based frameworks was synthesized as the electrocatalyst for hydrogen evolution and further coupled with Cupriavidus necator H16. It showed high selectivity for a four-electron pathway of oxygen reduction reaction and low production of reactive oxygen species, owing to the synergistic effect of Co–Nx modulating the charge distribution and adsorption energy of intermediates. Additionally, low metal leaching and excellent stability were observed, which may be attributed to low content of Co and the stabilizing effect of metalloporphyrins. Hence, the electrocatalyst exhibited excellent biocompatibility. Finally, the microbial electrosynthesis system equipped with the electrocatalyst successfully converted CO2 to poly-β-hydroxybutyrate. This work drew up a novel strategy for enhancing the biocompatibility of electrocatalysts in microbial electrosynthesis system.

关键词: microbial electrosynthesis     hydrogen evolution reaction     metalloporphyrins     biocompatibility     CO2 conversion    

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1084-1095 doi: 10.1007/s11783-015-0805-y

摘要: Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L ?h for Cu(II) at an initial concentration of 50 mg?L and 5.3±0.4 mg?L h for Co(II) at an initial 40 mg?L were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L ?h ) and Co(II) (6.4 mg?L ?h ) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol COD). Phylogenetic analysis on the biocathodes indicates dominantly accounted for 67.9% of the total reads, followed by (14.0%), (6.1%), (2.5%), (1.4%), and (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

关键词: biocathode     microbial electrolysis cell     microbial fuel cell     Cu(II) removal     Co(II) removal    

Current molecular biologic techniques for characterizing environmental microbial community

Dawen GAO, Yu TAO

《环境科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 82-97 doi: 10.1007/s11783-011-0306-6

摘要: Microbes are vital to the earth because of their enormous numbers and instinct function maintaining the natural balance. Since the microbiology was applied in environmental science and engineering more than a century ago, researchers desire for more and more information concerning the microbial spatio-temporal variations in almost every fields from contaminated soil to wastewater treatment plant (WWTP). For the past 30 years, molecular biologic techniques explored for environmental microbial community (EMC) have spanned a broad range of approaches to facilitate the researches with the assistance of computer science: faster, more accurate and more sensitive. In this feature article, we outlined several current and emerging molecular biologic techniques applied in detection of EMC, and presented and assessed in detail the application of three promising tools.

关键词: molecular biological technique     microbial community     denaturing gradient gel electrophoresis (DGGE)     terminal restriction fragment length polymorphism (T-RFLP)     environmental applications    

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 317-323 doi: 10.1007/s11783-013-0596-y

摘要: Microbial desalination cell (MDC) is a promising technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaCl, MgCl , KCl, and CaCl with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca >Mg >Na >K . Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaCl and MgCl with different concentrations were used in the desalination chamber to study the effect of ion concentrations. Results showed that when ion concentrations of Na were one-fifth to five times of Mg , ion concentration influenced the dialysis more profoundly than electrodialysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%–3% of the charge transfer in the MDC.

关键词: divalent ion     electrodialysis     ion characteristic     microbial desalination cell     monovalent ion    

标题 作者 时间 类型 操作

Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential, dissolved organic nitrogen and microbial community

期刊论文

Process control factors for continuous microbial perchlorate reduction in the presence of zero-valent

ARTHUR Robert D.,TORLAPATI Jagadish,SHIN Kyung-Hee,CHA Daniel K.,YOON Yeomin,SON Ahjeong

期刊论文

Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms

Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia

期刊论文

meets artificial photosynthesis: Solar to green fuel production, water remediation and carbon emission reduction

期刊论文

Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor

Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou

期刊论文

Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived

Thomas F. Ducey, Jessica C. Collins, Kyoung S. Ro, Bryan L. Woodbury, D. Dee Griffin

期刊论文

Responses of microbial interactions to elevated salinity in activated sludge microbial community

期刊论文

Advances in Fe(III) bioreduction and its application prospect for groundwater remediation: A review

Yu Jiang, Beidou Xi, Rui Li, Mingxiao Li, Zheng Xu, Yuning Yang, Shaobo Gao

期刊论文

Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

期刊论文

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

期刊论文

thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial

期刊论文

porphyrinic triazine-based frameworks with excellent biocompatibility for conversion of CO in H-mediated microbial

期刊论文

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

期刊论文

Current molecular biologic techniques for characterizing environmental microbial community

Dawen GAO, Yu TAO

期刊论文

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN

期刊论文